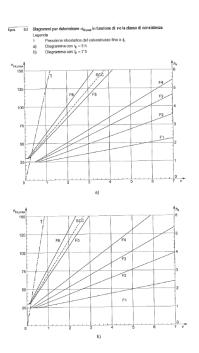


DIREZIONE REGIONALE LOMBARDIA

Il ruolo del calcolo nel processo costruttivo

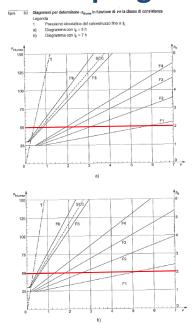
La cassaforma non è solo un'attrezzatura di contenimento: è una struttura temporanea portante, che deve essere dimensionata per resistere a carichi complessi e variabili, garantendo geometria, sicurezza e qualità del getto.

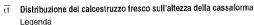


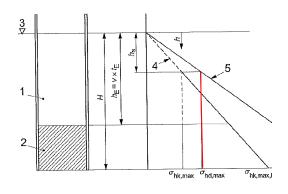
Riferimenti normativi UNI 11763

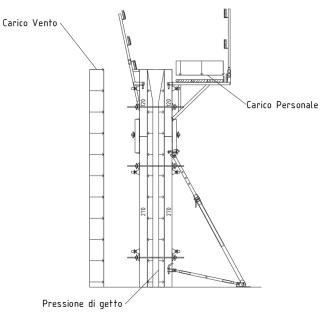
UNI EN 206:2016	Calcestruzzo - Specificazione, prestazione, produzione e conformità
UNI EN 1065:1999	Puntelli telescopici regolabili di acciaio - Specifiche di prodotto, progettazione e verifica attraverso calcoli e prove
UNI EN 1990:2006	Eurocodice - Criteri generali di progettazione strutturale
UNI EN 1991-1-4:2010	Eurocodice 1 - Azioni sulle strutture - Parte 1-4: Azioni in generale - Azioni del vento
UNI EN 1992-1-1:2015	Eurocodice 2 - Progettazione delle strutture di calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici
UNI EN 1993, tutte le parti	Eurocodice 3 - Progettazione delle strutture di acciaio
UNI EN 1995, tutte le parti	Eurocodice 5 - Progettazione delle strutture di legno
UNI EN 1999, tutte le parti	Eurocodice 9 - Progettazione delle strutture di alluminio
UNI EN 10204:2005	Prodotti metallici - Tipi di documenti di controllo
UNI 11763-1:2019	Attrezzature provvisionali - Casseforme - Parte 1: Casseforme verticali - Requisiti generali per la progettazione, la costruzione e l'uso
UNI EN 12811-1:2004	Attrezzature provvisionali di lavoro - Parte 1: Ponteggi - Requisiti prestazionali e progettazione generale
UNI EN 12812:2008	Strutture di sostegno per opere permanenti - Requisiti prestazionali e progettazione generale $$
UNI EN 12813:2006	Attrezzature provvisionali di lavoro - Torri di sostegno realizzate con componenti prefabbricati - Metodi particolari di progettazione strutturale
UNI EN 13374	Sistemi temporanei di protezione dei bordi – Specifica di prodotto – Metodi di prova
UNI EN 13670:2010	Esecuzione di strutture di calcestruzzo
UNI EN 16031:2012	Puntelli telescopici regolabili di alluminio - Specifiche di prodotto, progettazione e verifica attraverso calcoli e prove
CEI EN 82079-1:2013	Preparazione di istruzioni per l'uso – Struttura, contenuto e presentazione – Principi generali e prescrizioni dettagliate

Le UNI 11763 forniscono un linguaggio tecnico comune e un approccio coerente alla progettazione e verifica delle casseforme. Il calcolo deve basarsi su criteri prestazionali, integrando le indicazioni con gli Eurocodici e con le EN di riferimento dei materiali e prodotti presenti nel ciclo di impiego delle casseforme.



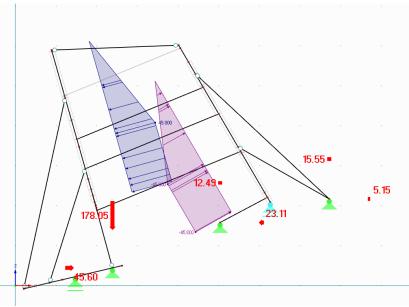





Azioni di progetto

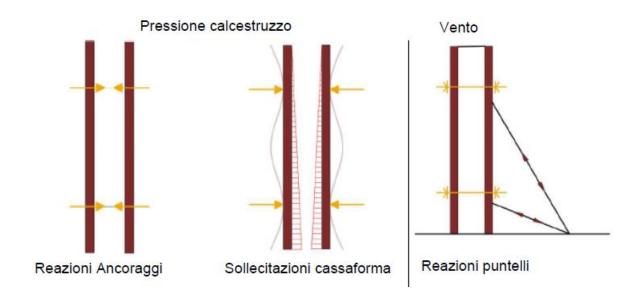
- Całcestruzzo fresco
- 2 Calcestruzzo che ha iniziato la presa (non più lavorabile)
- 3 Livello superiore del calcestruzzo
- 4 Pressione idrostatica del calcestruzzo fresco (σ_h)
- 5 Pressione idrostatica di calcolo (σ_{hd} = η_E × σ_h)

Le azioni principali derivano dalla pressione del calcestruzzo fresco, che varia con la velocità di getto, la temperatura, la consistenza e la geometria. A queste si sommano carichi verticali e orizzontali d'uso. L'approccio corretto è combinare in modo realistico le azioni, valutando i casi più gravosi.



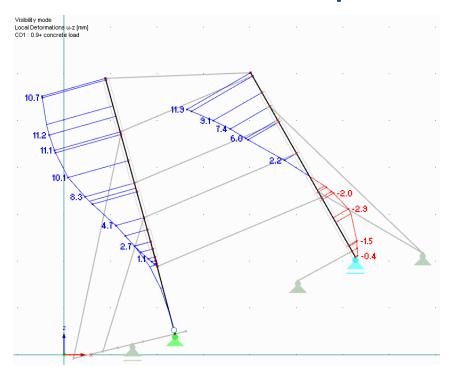
Modellazione e criteri di verifica

La modellazione può essere condotta con schemi semplificati, purché rappresentativi. L'obiettivo è verificare resistenza, stabilità e deformabilità degli elementi.



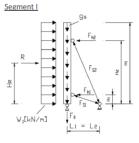
Le casseforme verticali

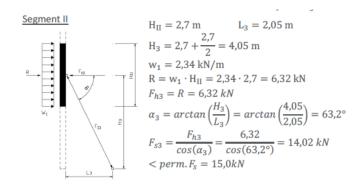
Le casseforme verticali presentano criticità specifiche: stabilità del sistema durante il getto, controllo della deformazione e verifica degli ancoraggi.



Deformazioni e finitura superficiale

Le deformazioni della cassaforma incidono direttamente sulla finitura del calcestruzzo. È quindi necessario valutare non solo la resistenza, ma anche la rigidezza del sistema.





Sicurezza e documentazione

$$\begin{split} F_{h1} &= 6,32 \cdot \left(1 - \frac{1,35 - 0,3}{2,1 - 0,3}\right) = 2,63 \text{ kN} \\ \alpha_1 &= \arctan\left(\frac{H_1}{L_1}\right) = \arctan\left(\frac{0,3}{1,1}\right) = 15,3^\circ \\ F_{s1} &= \frac{F_{h1}}{\cos\left(\alpha_1\right)} = \frac{2,63}{\cos\left(15,3^\circ\right)} = 2,73 \text{ kN} \end{split}$$

$$\begin{split} &H_{I} = 2,70 \text{ m} \\ &H_{1} = 0,30 \text{ m} \\ &H_{2} = 2,10 \text{ m} \\ &H_{R} = \frac{H_{I}}{2} = 1,35 \text{ m} \\ &L_{1} = 1,10 \text{ m} \\ &R = W_{1} \cdot H_{I} = 2,34 \cdot 2,7 = 6,32 \text{ kN} \\ &F_{h1} = R \cdot \left(1 - \frac{H_{R} - H_{1}}{H_{2} - H_{1}}\right) \\ &F_{h2} = R \cdot \frac{H_{R} - H_{1}}{H_{2} - H_{1}} \\ &F_{h2} = 6,32 \cdot \frac{1.35 - 0,3}{2,1 - 0,3} = 3,69 \text{ kN} \\ &\alpha_{2} = \arctan \left(\frac{H_{2}}{L_{1}}\right) = \arctan \left(\frac{2.1}{1,1}\right) = 62,4^{\circ} \\ &F_{s2} = \frac{F_{h2}}{\cos \left(\alpha_{r}\right)} = \frac{3,69}{\cos \left(62,4^{\circ}\right)} = 7,96 \text{ kN} \end{split}$$

Il calcolo è parte integrante della sicurezza di cantiere. Ogni cassaforma deve essere accompagnata da una documentazione tecnica che dimostri la coerenza del dimensionamento con le condizioni d'uso.

Il progettista deve dialogare con l'impresa e con il fornitore per garantire l'uso conforme

Conclusioni

- Il calcolo non è un adempimento, ma uno strumento di sicurezza e qualità.
- Serve un linguaggio comune tra progettisti, fornitori e imprese.
- Le norme UNI 11763 rappresentano la base per un approccio europeo coerente.

In sintesi, la cassaforma va considerata a tutti gli effetti una struttura temporanea, e il calcolo ne è la garanzia di affidabilità, sicurezza e qualità del risultato finale.

